Lipoprotein(a), PCSK9 Inhibition and Cardiovascular Risk: Insights from the FOURIER Trial

Michelle L. O’Donoghue, Robert P. Giugliano, Anthony C. Keech, Estella Kanevsky, KyungAh Im, Peter S. Sever, Terje R. Pedersen, Marc S. Sabatine

European Atherosclerosis Society
May 7, 2018
Summary of Effects of PCSK9i Evolocumab

- ↓ LDL-C by 59% down to a median of 30 mg/dl
- ↓ CV outcomes in patients on statin
- Safe and well-tolerated

Placebo

Evolocumab (median 30 mg/dl, IQR 19-46 mg/dl)

59% reduction
P<0.00001

Absolute ↓ 56 mg/dl

KM Rate (%) at 3 Years

HR 0.85 (0.79-0.92)
P<0.0001

HR 0.80 (0.73-0.88)
P<0.0001

CVD, MI, stroke
UA, cor revasc

CVD, MI, stroke

Sabatine MS et al. NEJM 2017;376:1713-22
Lp(a) and Risk of MI

• Mendelian randomization data support a causal role for Lp(a) in risk of coronary heart disease

Risk of MI for Doubling in Lp(a) concentration

Kamstrup et al, JAMA. 2009;301(22):2331-2339
Methods

- Lp(a) was measured at baseline and weeks 12 and 48 at Medpace Reference Laboratories (Medpace Inc. Cincinnati, OH) using an isoform-independent immunoturbidometric assay (Polymedco, Cortlandt Manor, New York)

- Association between Lp(a) and CV risk
 - Examined in placebo arm
 - Unadjusted, and then adjusting for age, sex, race, weight, region, prior MI, history of stroke, PAD, HTN, DM, current smoking, baseline LDL-C

- Effect of evolocumab
 - On Lp(a) and LDL-C
 - CV outcomes by baseline Lp(a) concentration

- Association of achieved Lp(a), achieved LDL and CV risk

- Kaplan-Meier rates are reported at 3 years
Baseline Distribution of Lp(a)

Descriptive Statistics
N=25096
Median (IQR) = 37 (13-165) nmol/L
Baseline Characteristics

Quartiles of baseline Lp(a)

<table>
<thead>
<tr>
<th></th>
<th>Q1 (<14nM)</th>
<th>Q2 (14-37nM)</th>
<th>Q3 (38-165nM)</th>
<th>Q4 (>165nM)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean (SD)</td>
<td>62 (9.0)</td>
<td>63 (9.1)</td>
<td>62 (9.1)</td>
<td>63 (8.8)</td>
<td>0.08</td>
</tr>
<tr>
<td>Male sex</td>
<td>80%</td>
<td>76%</td>
<td>76%</td>
<td>68%</td>
<td><0.001</td>
</tr>
<tr>
<td>Type of CV disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>79%</td>
<td>79%</td>
<td>81%</td>
<td>83%</td>
<td><0.001</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>21%</td>
<td>21%</td>
<td>20%</td>
<td>17%</td>
<td><0.001</td>
</tr>
<tr>
<td>PAD</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
<td>15%</td>
<td><0.001</td>
</tr>
<tr>
<td>CV Risk Factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>81%</td>
<td>81%</td>
<td>79%</td>
<td>80%</td>
<td>0.055</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>41%</td>
<td>36%</td>
<td>36%</td>
<td>34%</td>
<td><0.001</td>
</tr>
<tr>
<td>Current tobacco</td>
<td>30%</td>
<td>30%</td>
<td>29%</td>
<td>25%</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline LDL-C, mean (SD)</td>
<td>93 (25)</td>
<td>96 (27)</td>
<td>98 (31)</td>
<td>101 (27)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Baseline Lp(a) and CV Risk

Adjusted HR Q4:Q1 = 1.26 (95% CI 1.02-1.56)

KM rates at 3 years (%)

CHD death or MI

CV death, MI or stroke

Adjusted HR Q4:Q1 = 1.12 (95% CI 0.93-1.34)

MV model: Age, sex, race, weight, region, prior MI, history of stroke, PAD, HTN, DM, current smoking, baseline LDL-C

Restricted to placebo arm
Baseline Lp(a) and CV Risk

Adj HR Q4:Q1 = 1.31 (95% CI 1.04-1.66)

Adj HR Q4:Q1 = 0.92 (95% CI 0.63-1.33)

Adj HR Q4:Q1 = 1.23 (95% CI 0.81-1.89)

KM rates at 3 years (%)

Myocardial infarction

Stroke

Coronary death

MV model: Age, sex, race, weight, region, prior MI, history of stroke, PAD, HTN, DM, current smoking, baseline LDL-C

Restricted to placebo arm
Change in Lp(a) from Baseline to Week 48 with Evolocumab

Median absolute change in Lp(a): -11 nmol/L

Median % change in Lp(a): -26.9%

Placebo-controlled values
Absolute change in \(\text{Lp}(a) \) for patients on evolocumab

Descriptive Statistics

N = 11,864
Median (IQR) = -11 (-32, -1) nmol/L

Absolute change from baseline to 48 weeks
% change in Lp(a) for patients on evolocumab

Descriptive Statistics
N=11864
Median (IQR) = -26.9 (-46.7, -6.2) %
Change in Lp(a) by Quartile of Baseline Lp(a) with Evolocumab

Median absolute change in Lp(a)

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Change (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>-1</td>
</tr>
<tr>
<td>Q2</td>
<td>-9</td>
</tr>
<tr>
<td>Q3</td>
<td>-24</td>
</tr>
<tr>
<td>Q4</td>
<td>-36</td>
</tr>
</tbody>
</table>

Median % change in Lp(a)

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>-9.1</td>
</tr>
<tr>
<td>Q2</td>
<td>-16</td>
</tr>
<tr>
<td>Q3</td>
<td>-32.5</td>
</tr>
<tr>
<td>Q4</td>
<td>-41.9</td>
</tr>
</tbody>
</table>

*Reflects change from baseline to week 48 Placebo-controlled values
Absolute change in Lp(a) versus LDL for patients on evolocumab

\[r = 0.21 \]

Change from baseline to week 48
% change in Lp(a) versus LDL for patients on evolocumab

$r = 0.37$

Change from baseline to week 48
Efficacy by Baseline Lp(a)

CV death, MI or stroke (3y KM rate, %)

HR 0.85
(95% CI 0.73-0.97)
ARR=1.26%
NNT=79

HR 0.76
(95% CI 0.66-0.86)
ARR=2.8%
NNT=36

P interaction=0.26
Achieved Lp(a), LDL and CV Risk

- CV death, MI or stroke beyond week 12 (%)
 - Lp(a) > median: 9.43%
 - Lp(a) <= median: 8.45%
 - LDL-C > median: 7.88%
 - LDL-C <= median: 6.57%

P < 0.001

KM rate at 3 years
Summary

• Evolocumab significantly reduces Lp(a) concentration

• Patients starting with higher Lp(a) levels appear to derive greater absolute benefit from PCSK9 inhibition.

• Patients who achieve lower levels of both LDL-C and Lp(a) have the lowest subsequent risk of CV events.